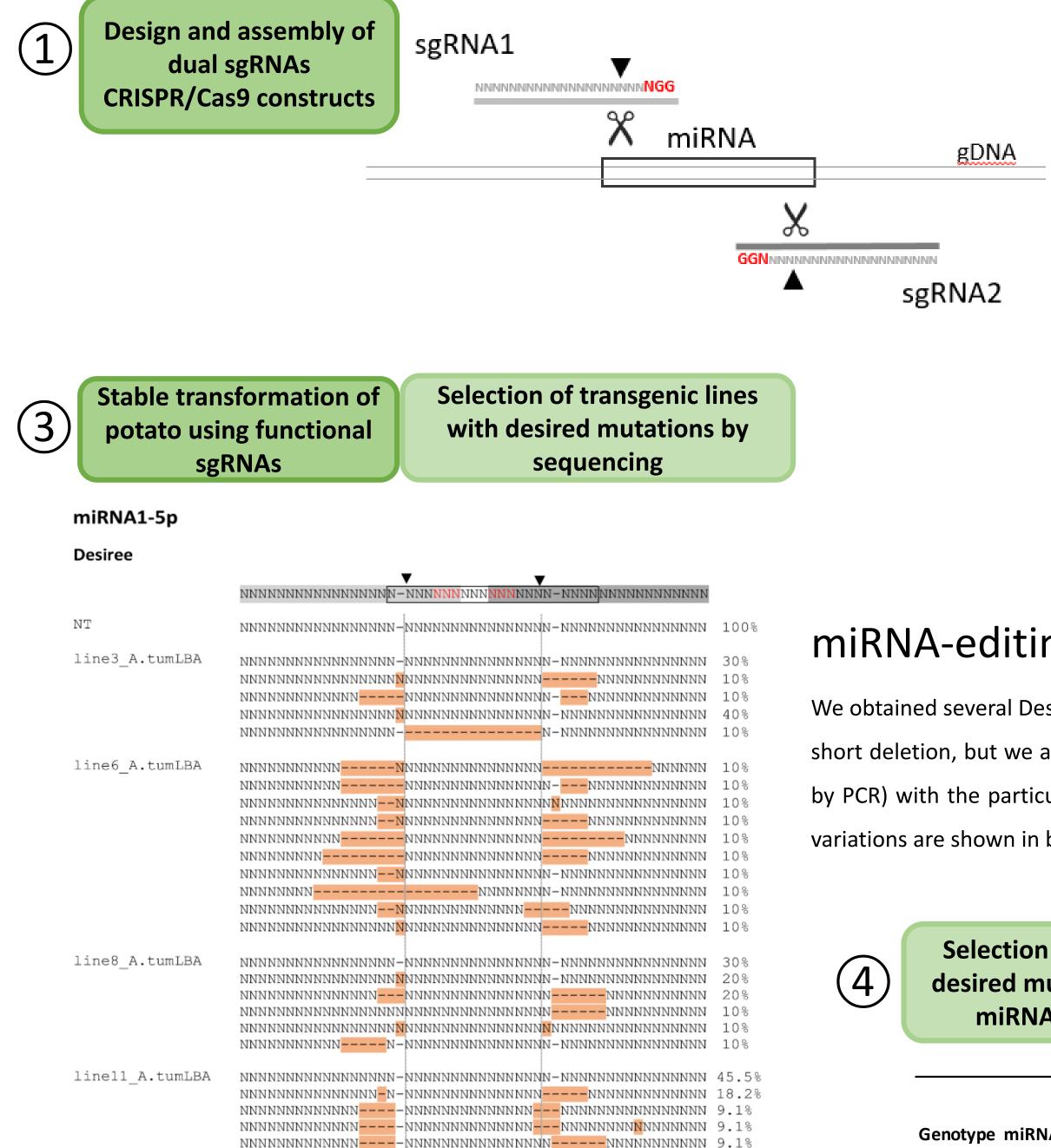
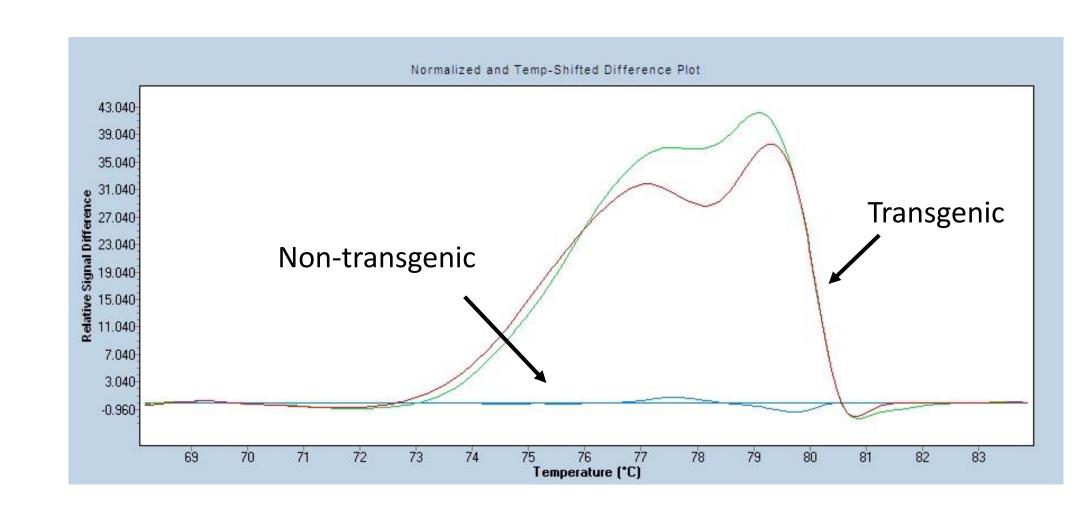
Expression of microRNAs can be fine-tuned by the CRISPR/Cas9 system in potato


Tjaša Lukan^{1,*}, Florian Veillet², Anna Coll Rius¹, Tjaša Mahkovec Povalej¹, Karmen Pogačar¹, Katja Stare¹, Maja Križnik¹, Laura Chauvin², Jean-Eric Chauvin², Kristina Gruden¹

1 Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia 2 INRAE UMR IGEPP, Domaine de Kéraïber, Ploudaniel, France * Corresponding author (tjasa.lukan@nib.si)



NATIONAL INSTITUTE OF BIOLOGY

To date, CRISPR/Cas9-mediated microRNA editing has not been established in potato. However, there is a growing evidence that small noncoding RNAs can be targeted by CRISPR/Cas9 system in plants. The novel gene-editing strategy is a challenge yet worth accepting, due to the compelling robustness, specificity, and stability for the modification of microRNA expression. In potato, CRISPR/Cas9 technology was mostly used in combination with time-consuming Agrobacterium-mediated stable transformation. On the other hand, protoplasts transfection is a faster method, but protoplasts isolation and regeneration of transgenics remain bottlenecks. We established the complete pipeline for CRISPR-Cas9-mediated modulation of microRNA expression in potato, which considers pros and cons of both methods.

High resolution melting (HRM) following protoplasts analysis transfection is fast and efficient screening method for testing functionality of designed sgRNAs

Melting curves of transgenic plants differ from the one of the control, suggesting the presence of mutations in the gDNA isolated from transfected protoplasts.

miRNA-editing using dual sgRNA constructs results in different types of mutations

We obtained several Desiree transgenic lines with different types of mutations between transgenic lines but also in different alleles of the same plant. The most abundant type of mutations were short deletion, but we also identified 1-nt insertions (T or G) and longer deletions. Next to sequences, the percentage of amplicons (obtained by amplifying miRNA coding and adjacent regions) by PCR) with the particular type of mutations is shown. miRNA (boxed), sgRNA1 (light grey), sgRNA2 (dark grey), PAM motif (red), theoretical cutting site (arrowhead and dotted line). Allelic variations are shown in blue, mutations are shown in orange.

Selection of transgenic lines with desired mutations according to the miRNA abundance by qPCR

				Sickle-		Genotypisation			
Genotype miRNA	A. tum.	Line	Growth	shaped	No. of		miRNA	Insert in the	Cas9
	strain	LIIIC	Growth	leaves	mutated	Mutation types	abundance	genomic DNA	expressior

miRNA abundance correlates with the number and type of

line7_A.tumC58	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	70%
	имимимимимимими <mark></mark> имимимимимимимимими	20%
	ИИИИИИИИИИИИИИИИ <mark>–</mark> ИИИИИИИИИИИИИИИ – ИИИИИИИИИИ	10%

Rywal

NT	ииииииииииииииинииииииииииииииииииииии	100%
line8_A.tumLBA	NNNNNNNNNNNNNNNNN-NNNNNNNNNNNNNNNNNNNN	

miRNA2-5p

Desiree	. .	
	NNNNNNNNNNNNNNNNN - NNNN <mark>NNNNNNNNNNNNNNN</mark>	
NT	NNNNNNNNNNNNNNNN-NNNNNNNNNNNNNNNNNNNN	70% 30%
linel_A.tumLBA	NNNNNNNNNNNNN <mark>N</mark> NN-NNNNNNNNNNNNNNNNNNNN	20% 10%
	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	10%
	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	10응 10응
		10% 10%
	иииииииииииииииииииииииииииииииииииии	10%
	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	10%
	NNNNNNNNN <mark></mark> NNNNNNNNNNNNNNNNNNN <mark></mark> NNNNNNNNNN	10%

line6_A.tumC58

miRNA3-5p

Desiree

		_
 T NTRIBING TRIBING	8 T 8 T 8 T 8 T 8 T 8 T 8 T 8 T 8 T	TETETETETETETETETETETETETETETETETETETE
M — NENENENENENEN N	NINNNNNNNN	NNNNNNNNNNNNNNNNN-NNNNN
A TATATATATATATATATATATA	TATATATATATATATA	ALATATATATATATATATATATATATATATATATA

- NΤ
- line1_A.tumC58
- line3 A.tumC58
- line2 A.tumLBA 40%

					leaves		<i>,</i> ,			
						amplicons				
Desiree	3	C58pMP90	1	Very fast	No	11/11	Short deletions	0.12	Yes	1.55
Desiree	3	C58pMP90	4	Slow	No	0/10		1.27	No	Under LOD
Desiree	3	C58pMP90	7	Medium	No	0/10		0.25	No	Under LOQ
Desiree	3	C58pMP90	8	Medium	No	0/11		0.18	No	Under LOD
Desiree	3	LBA44040	2	Slow	No	10/10	Long and short deletions	0.06	Yes	1.83
Desiree	3	LBA44040	3	Medium	No	0/10		2.64	No	Under LOD
Desiree	3	LBA44040	4	Very fast	No	5/8	Short deletions	0.29	Yes	1.05
Desiree	3	LBA44040	6	Fast	No	10/10	Short deletions	0.07	Yes	2.42
Desiree	3	LBA44040	7	Fast	No	9/10	Long and short deletions	0.26	Yes	2.59
Desiree	1	C58pMP90	5	Fast	No	0/10		0.26	No	Under LOD
Desiree	1	C58pMP90	6	Fast	No	NA		0.36	Yes	1.90
Desiree	1	C58pMP90	7	Medium	No	3/10	Short deletions	0.30	Yes	0.62
Desiree	1	C58pMP90	8	Slow/medium	No	0/7		0.56	No	Under LOD
Desiree	1	C58pMP90	10	Slow	No	0/6		0.73	No	Under LOD
Desiree	1	C58pMP90	11	Fast	No	0/10		0.72	No	Under LOD
Desiree	1	LBA44040	1	Fast	No	NA		0.36	NA	Under LOD
Desiree	1	LBA44041	3	Fast	Yes	7/10	Short deletions and insertion	0.33	Yes	1.73
Desiree	1	LBA44042	6	Very fast	Yes	10/10	Short deletions	0.18	Yes	0.94
Desiree	1	LBA44043	8	Medium	No	7/10	Short deletions and insertion	0.43	Partially	0.17
Desiree	1	LBA44044	9	Slow	No	0/11		2.21	Partially	Under LOD
Desiree	1	LBA44045	11	Fast	No	6/11	Short deletions and indels	0.67	Yes	0.21
Desiree	2	C58pMP90	1	Slow	No	NA		2.47	No	0.06
Desiree	2	C58pMP90	2	Very fast	No	NA		0.78	No	Under LOQ
Desiree	2	C58pMP90	6	Fast	No	6/9	Short deletions	0.17	Yes	1.01
Desiree	2	C58pMP90	8	Fast	No	0/11		2.09	No	Under LOD
Desiree	2	C58pMP90	12	Fast	No	0/12		0.92	No	Under LOD
Desiree	2	LBA4404	1	Medium	No	8/10	Short deletions and insertion	0.22	Yes	3.66
Desiree	2	LBA4404	6	Fast	No	NA		1.42	No	Under LOD
Desiree	2	LBA4404	4	Very fast	No	0/11		0.58	No	Under LOQ
Desiree	NT				No			1.00		Under LOD
Rywal	1	C58pMP90	9	Medium	No	0/9		0.87	No	Under LOD
Rywal	1	LBA4404	3	Very fast	No	0/10		3.23	Yes	Under LOD

mutations

miRNA abundance: Relative miRNA abundance (relative to the endogenous control) determined by qPCR in the selected transgenic lines was normalised to the averaged expression in non-transgenics (NT), which was set to one. miRNA abundance is lower in the lines with higher number of mutated alleles (No. of mutated amplicons).

miRNA-editing efficiency with selected dual sgRNA constructs is high

Insert in the genomic DNA: To discriminate transgenic from NT plants, we amplified three regions of the T-DNA by PCR using genomic DNA as a template. Among transgenic plants, 10 contain complete T-DNA in the genome. We confirmed the presence of all T-DNA regions in the genome of transgenics with mutations. The majority of plants with no mutations do not contain any region of T-DNA in the genome.

NNNNNNNNNNNN <mark></mark> NNNNNNNNNNNNNNNNNNNN	Rywai	1	LBA4404	3 very	ιασι	INO	0/10		5.23	res	UnderLOD	
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Rywal	1	LBA4404	4 Very	fast	No	NA		3.19	Yes	Under LOQ	Cas9 expressi
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Rywal	1	LBA4404	5 Very	fast	No	NA		1.62	No	0.01	to the endoge
NNNNNNNNNNNNNN <mark></mark> NNNNNNNNNNNNNNNNNN	Rywal	1	LBA4404	8 Med	ium	Yes	1/8	Short deletions	0.10	Yes	0.85	
NNNNNNNNNNNNNN <mark></mark> -NNNNNNNNNNNNNNNNNNNN	Rywal	1	LBA4404	9 Fast		No	0/7		1.34	No	Under LOD	In all transg
NNNNNNNNNNN <mark></mark> NNNNNNNNNNNNNNNNNNNNNN	Rywal	1	LBA4404	11 Med	ium	No	NA		2.25	NA	Under LOQ	detected mu
NNNNNNNNNN <mark></mark> NNNNNNNNNNNNNNNNNNNNNN	Rywal	1	LBA4404	18 Very	slow	No	0/7			NA		Cas9-editing.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Rywal	1	LBA4404	19		No	0/7			No	Under LOD	-
NNNNNNNNNNNNNNN <mark></mark> NNNNNNNNN	Rywal	1	LBA4404	20		No	0/8			NA		abundance
NNNNNNNNNNNNN <mark></mark> -NNNNNNNNNNNNNNNNNNNNN	Rywal	NT				No			1.00		Under LOD	detection/qua
	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	NANNANANANANANANANANANANANANANANANANAN

ion: Relative expression of Cas9 (relative enous control) was determined by qPCR. enic lines with Cas9 expression, we tations, suggesting high efficiency of In addition, expression correlates with of mutations. LOD/LOQ: limit of antification

We established fast and efficient pipeline for CRISPR/Cas9-mediated microRNA fine-tuning of miRNA expression in polyploid species and validated it on three miRNAs from potato. It consists of:

Design and assembly of CRISPR/Cas9 constructs		Transient transfection of protoplast with constructs	HRM to select functional sgRNAs		Stable transformation of potato using functional sgRNAs	Selection of transgenic lines with desired mutations according to mutation types and miRNA abundance
--	--	--	---------------------------------------	--	---	---