

Faisal Saeed¹, Ufuk Demirel¹ Allah Bakhsh² ¹Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey.

²Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan. *Correspondence Email: <u>abthebest@gmail.com</u>. <u>faissalsaeed@hotmail.com</u>.

Abstract

- Tomato (Solanum lycopersicum L.) is one of the important vegetables in the world due to its commercial and dietary value and its widespread production.
- > All over reduction in crop production worldwide 20-40 % due to biotic stresses.
- Several genes of tomato plants have been identified related to a positive and negative regulator of the immunity gene.
- \succ \In this study, we find out CPL-3 gene in tomato.
- Further, we are trying to knock out the CPL-3 gene using Crispr-Cas9 that is involved in downregulating immune responsive genes of crop plants under biotic stress conditions.

Introduction

- Turkey is the fourth-largest producer of tomatoes.
- Different bacterial diseases.
- Bacterial Speck.
- Bacterial Canker.
- Bacterial Spot.
- Bacterial Wilt.
- Many bacterial pathogens of plants and animals disarm and remodel host cells by injecting large repertoires of effectors.
- These bacterial pathogens released some proteins which effect metabolism of plants and suppress immunity of plant. They start necrosis of infected leaf or wilting process start and ultimately
- death of plant occurs. Once plant effected by these bacterial pathogens it's impossible to take
- effective measures against these pathogens Tomato as a dicot crop would be an idyllic candidate crop plant for the
- use of CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat)-Cas9.
- By knocking out CPL-3, tomato plants will continue to express immunerelated genes in response to biotic stresses, hence immunity against a pathogen will be achieved.

Soft by 19	core' 🗌 'gc' 🛙	o 'position'			
•	On-score @	Sequence	Region	%GC	V
ouidel	0.4349	GGAGGGTGAGATCTCAGATTCGG	CDS	50%	
- muide2	0.3340	GAAGTAGTACTAGTAGTAGG	CDS	408	
mide?	0 2164	TTCACTTCAACAAATCACTCACC	CDC	253	
uides	0.5104		005	208	×
uide4	0.2830	TTGGAAGTAGTACTAGTAGTAGG	CDS	358	✓.
uide5	0.2442	AAGTAGTACTAGTAGTAGGTGGG	CDS	35%	✓

Get the secondary structure and microhomology score of the selected sgRNAs above advance

